

METRO MEtallurgical TRaining On-line

Growth of solid phase

Olga Wodo CzUT

- Introduction
- Physical background
- Dendritic and eutectic growth
- Interaction between phases and grains
- Single grain growth
- Keypoints and sources

Once, the nucleus has appeared it starts to grow

What is a solid phase?

^ή "A phase is a constituent completely homogeneous both physically and chemically separated from the rest of the alloy by definite bounding surfaces"

Decrease in temperature:

Glass formation

– continuously increase in viscosity
Crystallization

- discontinuously increase in viscosity

What is microstructure?

Microstructure is defined by phases and morphology

Phase diagram and microstructure

When or how fast the phase transformation occur?

Thermodynamics

+ kinetics

complex microstructure

Introduction

The crystal growth is limited by:

- the kinetics of atom attachment to the interface,
- capillarity,
- diffusion of heat and mass,
- convection.

Physical background

(What affects the crystal growth process?)

Transport processes

$$\frac{\partial}{\partial t}(\rho\phi) + \nabla(\rho V\phi) = \nabla \cdot (\rho \Gamma \nabla\phi) + S$$

where:

 ∇ - del operator

t -time

- ϕ -the phase quantity
- ρ density
- V velocity vector
- Γ general diffusion coefficient
- S -source term

quantity	mass	energy	species	momentum
ø	1	Н	С	V
Γ	0	α	D	ν

Diffusion

type of diffusion	diffusing species	type of phase	layer thickness[mm]
6. 604	kali nggri	(200	at $V = 0.01$ mm/s
solutal	substitutional atom	crystal	10^{-4}
	interstatial atom	crystal	10^{-1}
	either	liquid	10^{0}
thermal	heat	crystal	$> 10^{2}$
		liquid	$> 10^{2}$

Microsegregation

Analysis of the solute redistribution:

- equilibrium lever rule
- no diffusion in solid
- partial diffusion in solid
- mixing in liquid
- limited diffusion in liquid
- complete diffusion in liquid

Microsegregation

Microsegregation

 $T_{e}k$

Heat transport

- Without heat removal there is no solidification
- Constitutional undercooling can lead to the dendritic growth
- Rate of solidification affect the CET
- Convection affect the final microstructure on micro and macroscale

Driving forces for convection:

- Internal (shrinkage flow, natural convection, capillary forces, formation of gas bubbles, and deformation of solid phases because of thermal stress)
- **External** (pressure gradient, electric, magnetic forces, external movement surrounding the melt)

Natural convection

- it comes from buoyancy forces
- density variation lead to the current flow, which is temperature and concentration dependent
- convection affect the temperature and concentration field
- convection may lead to the micro and macrosegregation

Capillarity convection

Shrinkage flow:

- comes from density variation between solid and liquid
- can lead to shrinkage cavity formation
- dominant factor of porosity formation
- source of motion
- inverse segregation

Capillarity effect

Capillarity effect:

- diffusion of solute (and/or heat) tends to minimise the scale of the morphology (maximise curvature)
- capillarity effects tends to maximise the scale (minimise curvature)

$$\Delta T_r = \Gamma \kappa, \qquad \kappa = \frac{1}{r_1} + \frac{1}{r_2}, \qquad \Gamma = \frac{\sigma}{\Delta S_f}$$

Attachment to the interface

- diffuse interface
- flat interface

Material	$\alpha = \frac{\Delta S_f}{R}$	morphology
regular materials and some organics	< 2	non-faceted
semi-metals and semiconductors	$2.2 \div 3.2$	faceted
most organics	> 3.5	faceted

Dendritic and eutectic growth

METRO – MEtallurgical TRaining On-line Copyright © 2005 Olga Wodo – CzUT

- equiaxed dendrites of pure substances
- equiaxed dendrites of alloys
- columnar alloy dendrites

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Olga Wodo - CzUT

Direction of dendrites

Structure	Dendritic growth	
Face-centred cubic	< 100 >	
Body-centred cubic	< 100 >	
Hexagonal close-packed	$< 10\bar{1}0 >$	
Body-centred hexagonal	< 110 >	

Role of convection in the liquid phase:

- decrease diffusional layer
- change of the concentration
- dendrite bending and orientation change
- dendritic arm detachment
- flow of crystal

$1 \rightarrow \alpha + \beta$

Compositions of α and β phases (phase diagram) size and arrangement of the layers (kinetics)

Classification in respect to the phase geometry:

- regular eutectic
- irregular eutectic
- complex regular quasi regular
- broken lamellar
- spiral

Globular Classification in respect to the phase kinetics:

- non-faceted / non-faceted eutectic
- non-faceted / faceted eutectic
- faceted / faceted

Classification in respect to the growth mechanism:

- cooperative growth of two phases
- divorced growth

Competitive growth of dendrites and eutectic due to:

- one phase instabilities
- two phase instabilities

Interaction between phases and grains (formation of the alloy microstructure)

Fee dendritic growth

- interdendritic flow,
- crystal can move

Reaching coherency point

 Coherency point is cooling rate, equiaxed grain size and concentration dependent

Solid skeleton form

- interdendritic flow only possible
- stress development

Zones in as-cast:

- I. fine zone
- II. columnar zone
- III. inner equiaxed grains zone

Source of the nuclei in the bulk:

- constitutional undercooling driven nucleation
- big bang mechanism
- dendrite detachment mechanism

Competition between equiaxed and columnar growth:

- degree and extend of constitutional undercooling
- columnar front velocity
- dendrite detachment mechanism
- convection and stirring in liquid phase

Motivation for such studies:

- research better understanding of the process and study of the properties
- real-life applications turbine blade

Control of such parameters, like:

- orientation
- shape
- concentration
- perfection

Control of orientation

Methods of the shape control:

- Bridgman method
- Czochralski method
- others

Control of concentration:

- contamination
- evaporation
- uniformity of concentration

Control of perfection:

- vacancies
- dislocations
- substructures

Summary - convection

Causes:

- external (magnetic field)
- internal (concentration and temperature dependent density variation, surface tension variation, shrinkage flow)

Effects:

- diffusional layer and concentration variation
- micro and macrosegregation
- chimney effect "fracles"
- macroscale columnar interface shape changes
- dendrite arm detachment and flow of the crystal
- promotes the CET

- crystallisation is associated with the discontinuous increase in viscosity
- microstructure defines phases and morphologies
- microstructure depend not only on thermodynamic but also on kinetic of transition
- the kinetics of atom attachment to the interface, capillarity, diffusion of heat and mass, natural and forces convection, time scale affect the crystal growth

- diffusion and convection as a mechanism of transport process
- diffusion tries to bring the system into equilibrium
- convection-a current motion which results in th mixing of the fluid
- external and internal driving forces for convection
- capillarity effect tends to maximise the scale of morphology
- diffusion tends to minimise the scale of morphology
- attachment kinetics leads to diffuse and flat types of interface

- columnar dendrites are constrained by the positive temperature gradient, equiaxed dendrites grow in the liquid of negative gradient
- microstructure is characterized by different-order spacing
- interdendritic flow changes diffusional layer; dendrites bending, arm detachment and flow of crystal is observed
- eutectics consists of two phases
- diffusion tends to decrease the lamellar spacing, and curvature effect tends to increase the spacing.
- instabilities cause competitive growth of dendrites and eutectics
- symmetric or assymetric coupled zone can be observed

- free growth is observed before reaching the coherency point
- when solid skeleton is formed stresses may develops
- mushy zone region where solid and liquid phase coexist
- chimney effect can be observed within the mushy zone
- convection can also affect the macroscopic columnar interface
- typical as-cast microstructure consists of three zones
- CET result of competitive growth between equiaxed and columnar crystals
- quality of monostructure depends on the control of orientation, shape, concentration, and perfection.

References

- 1) B. Chalmers, Principles of Solidification, John Wiley and Sons, 1964
- 2) G.S. Cole, in Solidification, American Society for Metals, Metals Park, 1971
- 3) E. Fraś, Krystalizacja metali, WNT, 2003
- 4) D.T.J. Hurle, Handbook of Crystal Growth, North Holland, 1994
- 5) F Hunt, Columnar to equiaxed transition, 1998
- 6) W. Kurz, D.J. Fisher, Fundamentals of Solidification, TTP, 1998
- 7) D.M. Stefanescu, Science and Engineering of Casting Solidification, Kluwer Academic,2002