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Finite Difference Method

The processes of heat conduction and mass transfer in ADI 
technology are described by Parabolic Equations, which can be 
solved numerically by application of the Finite Difference Method
(FDM) or Finite Element Method (FEM).

Heat Conduction Equation (Fourier's Law) has the form identical as 
Mass Transfer Equation (Fick's Law). Therefore, to examine both 
these processes it is enough to examine only one of them, e.g. the 
process of heat conduction. When the mass transfer is examined, the 
term heat diffusivity "a" will be replaced with the term mass diffusivity
"D", expressed in the same units (m2/s). Some differences may
occur, however, in boundary conditions or the problem of moving
phase boundary (which is presented in Lecture II, eqs. 3 - 10). 

There the simple version of the FDM is presented.

Introduction
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Finite Difference Method
(The simple version)

A differential equation with partial derivatives is solved by solving a 
system of algebraic equations, the number of which equals the number 
of nodes in a discretisation network. 

The method of the variables discretisation will be discussed on an 
example of the differential equation of heat conduction in a one-
dimensional plane solid body without any internal heat sources and 
with the value of thermal diffusivity ”a” kept constant:
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T – temperature,
τ - time,
x – co-ordinate.
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where:
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Finite Difference Method

The left side of the equation (1) can be replaced with the first member of Taylor’s sequence:
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Fig.1. Temperature – time function
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Finite Difference Method

The most frequently applied, and at the same time the easiest for computation, 
is approximation with forward differential quotient of the left side of the differential 
equation.

The right side of the differential equation of heat conduction, i.e. the temperature derivative with 

respect to space, is computed with central differential quotient of the second order (Fig. 2):

2
11

11

2

2 2
x

TTT
x

x
TT

x
TT

x
T k

i
k

i
k

i

k
i

k
i

k
i

k
ik

i ∆
+−

=
∆

∆
−

−
∆
−

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ +−

+−

∆x
xixi-1 xi+1

Tk
i+1

Tk
i

Tk
i-1 ∆x

(3)

where ∆x – distance step

Fig.2. Temperature – distance relation
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Finite Difference Method

By combining  (1), (2) and (3) we obtain:
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After transformation with respect to unknown, we obtain a differential equation with 
explicit system and bottom-up approximation with respect to accurate solution:
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(Fourier’s difference criterion)where:
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For mass diffusion the adequate criterion is:
where D – mass diffusivity, m2/s
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Finite Difference Method

The equation (4) keeps the physical point if the value of F (from the definition -
positive) doesn't affect on the direction of temperature change. 
It is done if:

1+k
iT

0)21( ≥− F

and then the stability condition is: 

(5)2/1≤F
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Finite Difference Method
Crank –Nicolson method

In Crank-Nicolson’s method, as an approximate value of temperature with respect 
to time, the differential symmetrical quotient at the time instant k+0,5 has been 
used; it gives approximate values oscillating around the true value of  accurate 
solution.

To make approximation of the temperature derivative, a forward differential 
quotient is used:

ττ ∆
−

≈⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ ++ k

i
k

i
k

i

TTT 15,0

while the second temperature derivative with respect to space coordinate is 
replaced by an arithmetic mean of the symmetrical differential quotients of the 
second order at time intervals k+1 and k:
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Finite Difference Method
Crank –Nicolson Method
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By substituting the approximations to (1) we obtain:
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Finite Difference Method
Crank –Nicolson Method

Due to high accuracy of the derivative approximation, large time steps 
can be applied, and for this reason Crank-Nicolson’s method is 
considered to be a differential tool most effective in computation of the 
non-steady heat conduction (in one-dimensional system).
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Finite Difference Method
Balance Method

Equation (4) can be derived by balancing the steady heat (or mass) flux 
flow. The method is specially suitable when combining the equations for 
a non-homogeneous network, comprising different space steps and 
characterised by different thermophysical parameters.

Let us isolate in a one-
dimensional space three plane 
elements of a linear dimension
∆x. The centres of these 
elements at the time level k will 
have temperatures amounting 
to Ti-1, Ti and Ti+1, respectively
(Fig.3).
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Finite Difference Method
Balance Method

Assuming that, at a given time interval ∆τ, the heat conduction is steady 
and the thermophysical parameters λ, c and ρ are constant, the heat 
balance for a middle element of temperature Ti can be written down as:
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λ, c, ρ - heat conductivity, heat capacity and densitywhere

The above balance is next transformed to form equation (4):
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Finite Difference Method

The dimensionless form of differential equation
One can use in computations any arbitrary temperature scale, and
hence equation (4) is written down in the form of:
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Finite Difference Method
The differential equation for a system boundary

Boundary condition of the 3rd type

The differential equation for the temperature of an element located near 
the body surface can be derived by the elementary balance method. The 
heat balance made for a near-surface element has the form of (Fig. 4):
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where α - heat transfer coefficient, W/m2K

Fig. 4
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Finite Difference Method
Boundary condition of the 3rd type

The term in equation (7) expresses heat resistance between the 
centre of border element and its environment.

⎟
⎠
⎞

⎜
⎝
⎛ +
∆

αλ
1

2
x

Transforming equation (7) we obtain:

GTFTGFTT k
i

k
i

k
i

k
i 11

1 )1( +−
+ ++−−=

amb
k

i TT =+1

The dimensionless parameter N has the sense of Biot's criterion 
referred to the dimension of a differential element ∆x, and as such can 
be called Biot's differential criterion. On the other hand, the quantity G
can be called differential criterion of the (most typical) boundary 
condition of the 3rd type.
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Finite Difference Method
Boundary condition of the 3rd type

The condition for stability of computations according to equation (8) 
is to have:
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Finite Difference Method
Boundary condition of the 3rd type

Preferably, equation (8) can be written down in a more general form as:
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Parameters Ai and Bi illustrate (for the conventionally adopted system of coordinates) the 
heat effect exerted on element “i” by elements located on its left and right side, respectively.

Equation (9) may be considered a general form of equation (4), where criteria Ai and Bi
have assumed values dependent on the location of element “i” within the domain of  1D
network:
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Finite Difference Method
Introducing the notion of phase transformation 

The phase transformation most important in castings is the transformation of metal 
from liquid to a solid state, combined with release of the latent heat of 
transformation, i.e. the heat of solidification. How important quantitatively is this 
transformation can be evaluated dividing the value of the heat of solidification of the 
examined metal or alloy by the value of its specific heat. Then we shall obtain a 
number H, expressed in degrees [K], which can be considered “temperature 
reserve of the heat of solidification”.

The heat of solidification, constant solidification temperature

For a typical cast iron: 

solidification heat L = 270 J/g

specific heat c = (0.753 + 0.837)/2 = 0.795 J/g K (mean specific heat for liquid and solid 
state

is obtained: H = L/c = 270/0.795 ≈ 340 K.
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Finite Difference Method

Dividing the value of H by the value of the transformation temperature we get  
the significance level of the heat of transformation. The significance of the heat 
of transformation SL, assuming  the solidification temperature of cast iron  is 
Tkr, is:

SL = H/Tkr ≈ 0.29

Heat of Solidification

It can be assumed further that from the moment when the solidifying but still liquid metal has 
reached the temperature of transformation, it possesses a “temperature reserve of the heat 
of solidification”, which means that the temperature of a given element will not drop below the 
solidification point as long as the temperature "reserve" is not completely exhausted, that is, 
as long as the condition:

HT
k
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is satisfied.
- temperature drop at a given time step below the solidification 
point.
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Finite Difference Method

Heat of Solidification

If condition (10) is satisfied, then the temperature will be maintained at a 
constant level, that is ( ). Hence, the time necessary to exhaust 
the temperature reserve H will equal the time of metal solidification within 
the domain of a given differential element.

kr
1k

i TT =+
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Finite Difference Method
Heat of Solidification

Range of Solidification Temperature

The heat of solidification within a temperature range can be introduced through 
application of the term  of an effective specific heat: 
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Finite Difference Method

When a function of the spectral heat of solidification Tη is available (for 

example of the type ( 2
210 TATAAT ++=η ) ), we can also use the term 

of an effective specific heat cef and Fef,  respectively, computing its value
for the actual metal temperature (the temperature at a given differential
interval), under the assumption that: 

Heat of Solidification
Range of Solidification Temperature

Tef cc η+= (13)

where 2
210T TATAA ++=η

A0, A1, A2 – regression coefficients
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Finite Difference Method

General form of equation for one-dimensional (1D) system

Let us assume that the differential elements have different dimensions and different 
thermophysical properties. For a unidirectional heat conduction (Fig. 3) the 
elementary heat balance can be written down as:
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Finite Difference Method
General form of equation for one-dimensional (1D) system
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Finite Difference Method
Two-dimensional system (2D)

For a two-dimensional network system, the 
differential equation can be derived by the 
elementary balance method (Fig. 5): 
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Finite Difference Method

Two-dimensional system (2D)

and after transformations with respect to temperature in a new time step we shall 
have:
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Finite Difference Method
Two-dimensional system (2D)

The stability condition of solution in equation (15) is to have:

 1DCBA j,ij,ij,ij,i ≤+++

For a regular differential network (                                        ), where F is 
the criterion determined by equation (4), the stability condition is:  

FDCBA j,ij,ij,ij,i ====

25.0≤F
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Finite Difference Method

Three-dimensional system (3D)

Compared to a 2D system, the differential equation for a 3D system 
can be derived by introducing to the elementary heat balance an 
additional balance along the axis “z” (Fig. 6) 
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Finite Difference Method

Three-dimensional system (3D)
Then the differential equation will assume the form of:
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Finite Difference Method

Three-dimensional system (3D)

The stability condition of solution in equation (16) is to have:

For a homogeneous system (cubic elements, the same coefficient of heat 
conduction), equation (16) can be written down as:
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where F – Fourier's differential criterion valid for a homogeneous network.

The condition for a validility of solution in the above equation is to have , which 
means that we have a condition three times more rigorous  than the one obtained for a 
solution valid in 1D system.
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